
J .  Fluid Me&. (1983), aol. 137, p p .  1-29 

Printed zn Great Britain 

1 

On the ability of drops or bubbles to stick to 
non-horizontal surfaces of solids 

By E. B. DUSSAN V. AND ROBERT TAO-PING CHOW 
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA 19104 

(Received 22 October 1982 and in revised form 25 March 1983) 

It is common knowledge that relatively small drops or bubbles have a tendency to 
stick to the surfaces of solids. Two specific problems are investigated: the shape of 
the largest drop or bubble that can remain attached to an inclined solid surface ; and 
the shape and speed a t  which it moves along the surface when these conditions are 
exceeded. The slope of the fluid-fluid interface relative to the surface of the solid is 
assumed to be small, making it possible to  obtain results using analytic techniques. 
It is shown that from both a physical and mathematical point of view contact-angle 
hysteresis, i.e. the ability of the position of the contact line to remain fixed as long 
as the value of the contact angle I3 lies within the interval 8, Q I3 < 8,, where OA + OK, 
emerges as the single most important characteristic of the system. 

1. Introduction 
The ability of drops or bubbles to stick to a non-horizontal solid surface is a 

phenomenon familiar to everyone. A foggy mirror in a steamy bathroom, gas bubbles 
lining the inside surface of a glass of water, or raindrops on windowpanes are just 
a few frequently observed examples. In  addition, drops or bubbles are often found 
in various types of industrial equipment. It is in tho latter case that questions of a 
quantitative nature frequently arise. For example, it is well known that condensation 
of vapour directly onto a relatively cool solid surface in the form of droplets can be 
as much as an order of magnitude more efficient than condensation onto a thin film 
of liquid covering the surface (Neumann, Abetelmessih & Hameed 1978). The rate 
of condensation is sensitive to both the size and shape of the drops, the smaller the 
drops, the faster the rate (Sadhal & Plesset 1979). It is thus important to identify 
the conditions under which drops can dislodge, roll off the surface and make way for 
the growth of smaller drops. Similarly, the presence of bubbles on a solid-liquid 
interface can have an undesirable effect. By reducing the area of contact between 
the liquid and the solid, their presence may slow down chemical reactions or reduce 
heat transfer rates. Yet another example consists of the spraying of chemicals such 
as pesticides. Here maximizing the area of coverage for a given volume of spray is 
desired (Furmidge 1962 ; Johnstone 1973). 

The present work is concerned with (i) identifying the conditions under which a 
drop begins to roll down an inclined plane, and (ii) predicting its subsequent motion 
(see figure 1 ) .  The most crucial aspect of this problem from a modelling point of view 
is the identification of the ‘glue’ responsible for holding the drop onto the surface 
of the solid. It is appealing to think of the drop as being held in place by molecular 
forces arising from the solid. Also, that roughening the surface on a microscopic scale 
enhances the ability of the solid to ‘grab ’ the drop. Although there is some truth in 
these statements, i t  is in general not profitable to use our intuition concerning the 
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FIGURE 1. This study applies to the case when the density of fluid A is greater than the density 
of fluid B, or to  the case when the density of fluid B is greater than the density of fluid C. Both 
cases are mathematically equal. The former corresponds to a drop, while the latter corresponds 
to a bubble. 

adhesion of solids to  other solids as a guide when dealing with drops on solid surfaces. 
All of the physical and chemical factors responsible for holding the drop onto the solid 
surface are lumped together in a continuum description by the specification of the 
contact angle. The contact angle under static and dynamic conditions determines the 
‘stickiness’ of liquids to  the solid surfaces. This study is based upon experimental 
observations of the behaviour of the contact angle. 

Unfortunately, there presently exists some controversy concerning the validity of 
dynamic-contact-angle measurements. It has recently been shown (Ngan & Dussan 
V. 1982) that the contact angle measured in the usual way may not be its actual value. 
It has been speculated, based upon the results of various theoretical studies (Hansen 
& Toong 1971; Dussan V. 1976; Huh & Mason 1977; Kafka & Dussan V. 1979; 
Lowndes 1980) that the differences arise from the ability of the viscous forces to 
influence the shape of the fluid-fluid interface in the immediate vicinity of the moving 
contact line, even at values of the capillary numbert as small as lop2. Hence, in order 
to minimize this effect, we restrict our analysis to contact-line speeds corresponding 
to very small capillary numbers. However, this does not eliminate the dependence of 
the contact angle on the speed of the contact line. Large variations may still occur 
due to the presence of non-equilibrium physical-chemical processes associated with 
the movement of molecules a t  the contact line (Blake & Haynes 1969). 

In  this study, we assume the contact angle 8 depends on the speed U of the contact 
line as shown in figure 2.  This incorporates (i) contact-angle hysteresis, and (ii) linear 
variations of the contact angle with the speed of the contact line. Thus, for 
stationary contact lines, l J  = 0, all values of 8 within the internal [OR, S,] are possible. 
Furthermore, when the liquid advances, U > 0 and 8 = 8, + U / K A ,  while if the liquid 
recedes, U < 0 and 8 = 8, + U/KR, with the value of K A  not necessarily equal to that 
of K R .  Four constants have been introduced, 8,, OR, KA, K R ,  whose values depend on 

t The capillary number is defined in $2. At this point, it  is important to know that it is directly 
proportional to the speed of the contact line. For fluids with small viscosity, a small capillary number 
can correspond to a contact line moving a t  quite a substantial speed. 
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FIGURE 2. It is assumed that the advancing and receding contact angles depend only on the speed 
of the contact line. This model introduces four material constants: the advancing 8, and receding 
8, contact angles (respectively the largest and smallest contact angles attainable under static 
conditions); and the values of the curve slopes 1 / ~ *  and 1 / ~ ~ ,  for U > 0 and .Y < 0 respectively. 

00 ( b )  0 
( c )  

FIGURE 3. The shape of the contact line, as reported by Bikerman (1950) for a solid a t  three different 
angles of inclination. In (a)  the solid is horizontal and the contact angle is 8,. The solid is inclined 
slightly in ( b ) ,  with its lowest end corresponding to the bottom of the figure. The contact line along 
the lower portion of the drop has advanced from its original position, while it has remained fixed 
along its upper portion. The angle of inclination is slightly greater than its critical value in (c). 

the identity of the materials and the finish of the solid. In  fact, the present work might 
be useful in defining experiments that allow one to measure all four of these material 
constants simultaneously. 

Most of the literature concerned with drops on nonhorizontal surfaces consists of 
either analyses based upon ad hoc assumptions, or experimental measurements. 
MacDougall & Ockrent (1942) identify the importance of OA and OR in determining 
the critical angle of inclination of the solid, beyond which the drop moves continuously 
down its surface. By viewing drops from the side, they measure the contact angles 
a t  both the lowest and highest positions along the contact line. They find that these 
angles are always OA and BE, respectively, at the critical angle of inclination, 
independent of the initial shape of the drop. Bikerman (1950) reports on the evolving 
shape of the contact line for initially axisymmetric drops placed on a horizontal 
surface with constant contact angle 0, (see figure 3). He reports that  the slightest 
inclination of the solid caused the lowest portion of the drop to advance forward while 
the location of the contact line along the upper portion remained $xed. The drop 
achieves a static equilibrium configuration even though the contact line no longer 
has a circular shape. Only after the contact line achieves the shape depicted in figure 
3(c), resulting from a further increase in the angle of inclination, does the drop 
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continue to move down the surface. This is also observed by Furmidge (1962). 
Furmidge also finds that a drop in its critical configuration satisfies the relation 

where yc is the critical angle of inclination, V is the volume of the drop, p is the density 
of the liquid, w is the width of the drop, g is the gravitational acceleration and u is 
the surface tension. This relationship is exact, although Furmidge did not realize i t  
despite the fact that  it is in excellent agreement with his experiments. A derivation 
involving no ad hoc assumptions is given in Appendix A. Unfortunately, ( 1 . 1 )  is not 
predictive since the width w of the drop is unknown. Hence further analysis is 
required. 

Brown, Orr & Scriven (1980) analyse the shape of the drop when the contact line 
is circular with known radius. They identify the critical angle of inclination as that 
angle above which no solution exists to the equation describing the shape of the drop. 
This criterion is valid only for those special cases for which both the maximum and 
minimum values of the contact angle associated with the drop in its critical 
configuration (as they have defined i t)  are within the interval [OR, OA]. Clearly this 
is not the appropriate criterion for the drops in the experiments of both Bikerman 
and Furmidge. Although Brown et al. solved numerically the full nonlinear partial 
differential equation governing the shape of the interface, their problem is somewhat 
simplified by the fact that  the location of the contact line is known apriori. Recently, 
Hocking (1981) has analysed the complete problem, as described by MacDougall & 
Ockrent, Bikerman and Furmidge, for two-dimensional thin drops. However, i t  is not 
obvious how one might apply his results to  the three-dimensional case. 

The boundary-value problem associated with the shape of the drop when the angle 
of inclination attains its critical value is not typical. There are two frequently 
encountered boundary conditions in the field of capillarity. The first involves the 
absence of contact-angle hysteresis, 8, = OR, and the specification of the contact 
angle a t  the contact line. This is a free-boundary problem because the location of the 
contact line is not known a priori. The second involves a contact line of known 
location: here the contact angle is then determined as part of the solution. The only 
material systems which can achieve such a configuration are those for which 
8, 6 8 6 OA for all values of 8 on the contact ‘line. The present problem of 
determining the critical configuration of the drop is shown in $2 to be a hybrid of 
the above two types. Over part of the boundary the contact angle is known while 
the location of the contact line is unknown, and over the remainder of the boundary 
the shape of the contact line is specified while the variation in value of the contact 
angle along its length is unknown. A peculiar feature of this problem is that  part of 
the solution consists of determining the location of the points along the contact line 
a t  which this change in specification of the boundary condition occurs. 

In  $2 the general problem is formulated. Two special cases are identified and solved 
in §$3 and 4. I n  $5 a formal expansion is presented for the case of a drop moving 
slowly down an inclined surface, which is valid for materials characterized by 
(8,-8R)/eA 4 1 .  The expansion utilizes the solutions obtained in the previous two 
sections. A discussion of the results appears in $6. 
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2. Formulation 
2.1. Governing equations and boundary conditions 

Throughout this entire study, it is assumed that the slope of the fluid-fluid interface 
is everywhere small. This justifies using lubrication theory. Since we are only 
interested in the well-known lowest-order mode, the governing equations are 
presented without derivation and the dependent variables are not subscripted. The 
general formulation of this problem is quite similar to that of Greenspan (1978), who 
was interested in the spreading of a thin drop on a horizontal solid surface. However, 
the problems differ considerably due to the form of the boundary condition a t  the 
contact line and the necessity to include gravity in this study. 

The equations governing the velocity and pressure fields, to lowest order, are 

\ 0 = - v , p + p %  +pgsinyi, 
a22 

ap 
aZ 0 = - - -pg cos y, I 

where P denotes the pressure, ,u denotes the dynamic viscosity, V H (  ) denotes 
that portion of the gradient operator tangent to the surface of the solid, 
i.e. V,( ) = i a (  )/ax+ja( ) l a y ,  and q H  denotes that portion of the local vel- 
ocity vector within the liquid drop tangent to the surface of the solid, i.e. 
qH = u(x ,  y ,  z )  i+v(x ,  y ,  z ) j .  The origin of the coordinate system lies on the surface 
of the solid, which is inclined at an angle y with respect to the horizontal. I ts  x-axis 
lies tangent to and points down the surface, while the z-axis points in an upward 
direction perpendicular to the surface. The frame of reference is chosen to be at rest 
with respect to the centre of mass of the drop. 

Other equations, boundary conditions and restrictions are as follows. The kinematic 
boundary condition and conservation of mass for an incompressible material combine 

where z = h(x,  y ,  t )  gives the location of the fluid-fluid interface, and Q is the 

I rh 
height-averaged value of qH : 

The normal and tangential components of the dynamic boundary condition at the 
Auid-fluid interface are respectively 

P = - c r V I , h  on z = h ,  (2.4) 

% = O  on z = h .  
a2 

It is assumed that the appropriate boundary condition a t  the dropsolid interface 
is the no-slip condition 

where Up denotes the velocity of the plate relative to the centre of mass of the drop. 
Since we are only interested in the behaviour correct to 0(1 )  as the capillary number 

q H =  Up on z = O .  (2.6) 
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FIGURE 4. The plan view of the contact line when the angle of inclination is larger than its critical 
value causing the drop to move steadily down the surface. Both the polar coordinate system ( T ,  $) 
and the angular location of the ends of the straight-line segments of the contact line &, 2n-&, 
2n -$A are identical. 

approaches zero, the no-slip condition does not introduce a singularity at the moving 
contact line. And, finally, the volume V of the drop is fixed: 

V =  hds, 
Js 

where S denotes the dropsolid interface. 
The heart of the problem lies in the proper handling of the boundary conditions 

a t  the contact line. Recall that  we are primarily interested in the static configuration 
of the drop when the angle of inclination of the solid is a t  its critical value, and in 
the dynamics of the drop when the angle of inclination is somewhat larger than its 
critical value. The central point is realizing that for both cases segments of the contact 
line on both sides of the drop must be straight lines with unit tangents equal to i, 
the direction of motion of the drop. This characteristic was present in the drawings 
of the shape of the contact line presented by both Bikerman and Furmidge, which 
were based upon their experimental observations; yet i t  was discussed by neither. 
The necessity of the existence of these straight-line segments becomes apparent when 
considering the problem from a theoretical point of view. Let’s examine a drop moving 
down the surface a t  a constant speed UD (expressed as UD i) as viewed from the frame 
of reference a t  rest with respect to  the solid. The local speed of the contact line is 
by definition U,,*m, where m is a unit vector lying in the tangent plane of the surface, 
perpendicular to  the contact line, and pointing away from the drop (see figure 4). Its 
speed has a maximum positive value of U, a t  position a ,  gradually decreasing to zero 
at  b. Along the entire straight-line segment, between b and c,  the speed must be 
identically zero, gradually decreasing to a negative value of - UD a t  position d .  The 
local value of the contact angle can be obtained from figure 2. Since the speed of the 
contact line is positive along the front of the drop, approaching zero a t  b ,  the value 
of the contact angle along that portion of the moving contact line must be greater 
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than 8 A ,  approaching the value of 8, a t  b. Likewise, since the speed of the contact 
line is negative along its rear, the value of the contact angle must be less than 8, 
approaching 8, at G. If points b and c coincided, i.e. if the straight-line segment did 
not exist, then the contact angle would have to undergo a discontinuous change in 
value. Combining this with the requirement that the contact line possesses a 
continuous tangent gives rise to a singularity (see $4). Hence a segment of contact 
line is needed between positions c and b where the contact angle can continuously 
change in value from 8, to 8,. Recall, whenever the contact angle takes on values 
within this interval, the contact line must have zero speed (refer to figure 2). This 
is possible only if the tangent to the contact line points in the direction parallel to 
the motion of the drop. Thus, as the contact angle increases in value from 8, to 8,, 
the contact line must be a straight-line segment whose tangent points in the direction 
of motion of the drop. It might be possible for a moving contact line to exist with 
a discontinuity in its local tangent sector. However, this is outside the scope of the 
present study. I n  $4 i t  is shown that such shapes would be inconsistent with the 
small-slope approximation. 

It follows from the above discussion that along the contact line 

VA < $ < $R3 

contact line is a 
straight-line segment 2n: - #, < $ < 2n: - $ A 1  

where 0 denotes the velocity of the contact line measured in the frame of reference 
which is a t  rest with the centre of mass of the drop, and ( r , $ )  denotes a polar 
coordinate system in the z = 0 plane (refer to figure 4). The values of $, i.e. $A and 
(bR, at which the nature of the boundary condition changes, are not known a priori. 

Integrating (2.1) and applying the boundary conditions expressed in (2.4)-(2.6) 
enables us to evaluate (2.3), yielding 

Substituting the above expression into (2.2) gives 

The boundary condition a t  the contact line can be rewritten as 

contact line is a 
straight-line segment 
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where we have used m = - V ,  h/lVH hl and 0 x tan 0 = IVH hl evaluated a t  the contact 
line, h = 0, the latter being consistent with the small-slope approximation. Typical 
of free-surfare problems solved using the lubrication approximation, the shape h of 
the interface emerges as the sole unknown dependent variable. The location of'the 
contact line, $A, $R and Up are also unknown. 

2.2. Scaling and identi$mtion of boundary-value problems 

The lengthscale for both the x-  and y-variables is denoted by a. This represents the 
radius of the circular area of the solid wetted by a drop placed symmetrically with 
constant contact angle 0 A  on a surface inclined a t  an angle y neglecting the influence 
of gravity in the direction i tangent to the surface. The variables z and h are scaled 
with BAa. Since any motion is a direct consequence of the behaviour of the dynamic 
contact angle, all the velocities are scaled by K A e A .  Time is scaled by a / K A O A .  

Defining dimensionless variables based upon these scales and substituting them into 
(2.7)-( 2.10) yields r 17 

hdS = J-, J, a 3 8 A  
(2.11) 

(2.12) 

(2.13) 

where all the above variables are now dimensionless; the capillary number C, is 
~,uK~/cT@,, the hysteresis parameter e is (OA-&)/oA, and the two gravitational 
parameters T and G are defined as pga2 cos y / a  and pga2 sin y / d A  respectively. 

As stated earlier, we are restricting this study to the limiting case valid to O(1) 
as C,-+O. Assuming that the proper expansion for h is 

h(r, $ ; Ca, g ,  c, T, KA/KR) = ho(r, $ ; G, E ,  T, KA/KR) + O (  1 ) 

as C,+O and that Q = 0 ( 1 )  as C,+O, (2.12) gives 

V g  h, - Tho + GX = A,, (2.15) 

where the constant of integration A,(G, e,  T, KA/KR) must be determined. Note that 
(2.15) can also be obtained by substituting the above expansion for h into (2.13). It 
is not surprising that (2.15) is the same as the equation that would be derived under 
static conditions. Hence the dynamics of the problem enters entirely through the 
boundary condition given by (2.14). The above derivation of (2.15) follows Greenspan, 
who was also concerned with the behaviour of a thin drop correct to 0(1) as C,+O. 

Although the governing partial differential equation (2.15) is linear, the entire 
problem is nonlinear owing to the form of the boundary condition (2.14). I n  order 
to make the problem tractable from an analytic point of view, the investigation is 
restricted to material systems for which e is small, and to angles of inclination 
above its critical value, for which G-G, is small, where G, = pga2sin yc/aeA. 
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Solutions to two limiting cases are obtained. In  $3, we look at  the limit when G+O 
and E = 0. Here t,he dependence of the speed and shape of the drop on K A  and K~ 

is determined. In  $4 the shape of the drop is analysed when the angle of inclination 
is a t  its critical value, i.e. G = G, and E + O .  Finally, in 95, the two limiting cases are 
combined to give a solution to the general problem of a drop moving down an inclined 
plane a t  a constant speed, in which E + 0. 

I n  the remainder of this section the solution for the case when E = 0 and G = 0, 
denoted as the (000)-mode, is presented since it is needed in both $93 and 4. Note 
that solutions corresponding to small values of G can represent either small drops 
on surface inclined a t  any angle 0' < y < 90O or large drops on almost horizontal 
surfaces. Hence the (000) mode is not limited to describing the shapes of drops on 
only horizontal surfaces. 

2.3. Solution to (000)-mode 

At the limit E = 0 and G = 0, (2.15) becomes 

VL hooo - Tho00 = A,,,. 

Since the static contact angle is unique, the contact line must be circular with 
constant radius, and the shape of the drop must be symmetric about its vertical axis. 
Hence in dimensionless form this gives 

hooo(1) = 03 (2.16) 

1 dhooo + -~ -Tho,, = A,,,. d2hoo, 
dr2 r dr 

The contact-angle boundary condition (2.14) is 

It is easily established that the solution to (2.16)-(2.18) is 

@I,(@) 
A,,, = - ~ 

I,(@) ' 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

where I ,  and I1 are the modified Bessel functions (Abramowitz & Stegun 1964), and 
where we have made use of the usual requirement of boundedness a t  r = 0. 
Substituting (2.19) into (2.1 1 )  gives 

(2.21) 

3. The steady motion of a drop moving down an inclined plane with no 
contact-angle hysteresis 

3.1. Formulation of boundary-value problem 
When there is no contact-angle hysteresis, i.e. E = 0, any inclination of the solid, no 
matter how small, will cause a drop to move down its surface. I n  addition, there is 
no reason to anticipate the appearance of the straight-line segments on the sides of 
the drop because the dependence of the contact angle on U is continuous a t  U = 0. 
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A regular expansion in G is assumed for the dependent variable h, and the parameters 
A, and Up of the form 

h, - h,,,(r, $ ; T )  + Gholo(r, $ ; T, K A / K ~ )  + . . ., 
A, N Aooo(T) + GAolo(T, K A / K R )  + . . . 

up, - GUpo,o(T, K A / K R )  + . . . , 
valid in the limit as G-0.  Note that 0 = 0 since the shape of the drop is stationary 
in our frame of reference, and Up,,, = 0, a characteristic of the (000)-mode. 

Substituting the above expansions into (2 .15)  gives 

V$ h,,, - Th,,, = - r cos $+A,,,.  (3 .1)  

The expansion of the contact-angle boundary condition (2 .14)  is more involved 
because i t  is evaluated a t  the contact line, denoted by r = R,($; G,O, T ) ,  whose 
location is part of the solution. Using a technique common to problems of this sort, 
an expansion is performed in both the dependent variable and location of the contact 
line. It is assumed that 

Ro 'V Roo,($; T,KA/KR)+GROIO($;T'KA/KR)+...~ (3 .2)  

valid as G + 0 ,  where i t  has been determined in $ 2 . 3  that  Roo,($; T )  = 1. Since the 
location of the contact line is given by h,(r, 4 ; G, E ,  T) = 0, the expansions for h, and 
R, must be related. It is easily shown that 

h, , , ( l ,$ ;T,KA/KR)  = 0 on r = 1 ,  

The former expression is used when analysing the (000)-mode (see (2 .16) ) ,  while the 
latter is used directly in the expansion of (2 .14)  to obtain 

where 
1 for -in < $  < i n ,  

K ( $ )  ( K A / K R  for < $ <zR. 

The lowest-order term appearing in the expansion of (2 .14)  is (2.18). The above 
expansion assumes that the origin is chosen so that  y = 0 is the plane of symmetry, 
and the advancing and receding portions of the contact line are given by 
-in < $ < in and in < $ < in respectively. Since the plate is moving in the 
- i-direction, i t  is anticipated that Upol0 < 0 (recall that  Up = Up i). The remainder 
of this section is devoted t o  obtaining the solution for h,,,, A,,, and t~polo. 

3.2.  Solution 
Let us introduce the variable 

A010 rcos$ Holo bolo+ - - - 
T T '  

Substituting the above into ( 3 . 1 )  and (3 .4)  gives 

(3 .5)  
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The inhomogeneity is now relegated to the boundary condition. 
It is easily established that a solution to (3.6) is given by 

m 
Holo = GoIo(r@)+ C 12(r@)[~sinZ#+G,cos1#], (3.8) 

2-1 

where the constants Go, {Gl, 4 : 1 = 1,2 ,  . . .}, A,,, and Up,,, are yet to be determined. 

( 1 ,  sin%#, cosn#:n = l , 2 ,  ...) 

Expanding the function K ( # )  cos # in terms of the basis 

Substituting (3.8) and (3.9) into (3.7),  and equating coefficients of each like vector 
of the basis gives the following results: 

(3.10) 

F, = 0 for n =  1,2,  ..., 

o for n =  3,5, .... 
Substituting (2.21) into the expression for Up,,, gives a somewhat simpler form 

(3.11) 

The constants G, and A,,, must still be determined. 
Recall that  (3.4), and hence (3.71, assumes the contact line is advancing, or 

receding, when -$R < # < $R or &I < # < #R. This implies that the x = 0 plane 
intersects the contact line a t  its widest point. Assuming that the tangent to the 
contact line is a continuous function, it is necessary that d(R, sin #) /d# = 0 a t  
# = &in. Substituting (3.3), (2.18), (3.5) and (3.8) into (3.2) gives 

G2I2(@)c~s1# 1 . 
It is easily seen that the above restriction a t  # = gives 

- 1  
G -- 
- TI~(@) ' 
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Finally the constant A,,, is determined by the volume constraint expressed by 
(2.11). Upon substituting the expansion for h, directly into the integrand, and the 
expansion for R, into the limits of integration, i t  follows that 

r 2 x  PI  

0 = J, J h,,,rdrd$. 
0 

Evaluating the above using the solution for h,,, thus far derived gives 

Combining the above with (3.10) gives 

A010 = 

4. The critical static configuration of a drop on an inclined plane with 
con tac t-angle hysteresis 

4.1. Formulation of boundary-value problem 

For a given material system, i.e. E is specified, a drop will move down any surface 
inclined a t  any y > yc, where yc = yc(e). I ts  shape when y = yc is determined by 
examining the limit as U,,+O, liD > 0 (see figure 4). In  this limit, the contact angle 
must be eA along the lower portion of the contact line, and OR along the upper portion. 
The boundary-value problem, expressed in terms of parameters G and T, is 

contact line is a 
straight-line segment 

where 

(4.1) 

(4.2) 

(4.3) 

must all be determined. Since a specific static configuration is sought', the subscript 
c is included. 

It' can be anticipated that a perturbation solution to the above problem, valid for 
e+O,  is singular. This is a direct consequence of the fact that when E = 0 no 
straight-line segments need be present in the contact line at the sides of the drop, 
while bhey must be present for E + 0, no matter how small its value. In  8 4.2 a solution 
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is obtained for the lowest-order modes in the outer region. The inner region, i.e. the 
region in the immediate vicinity of the straight-line segments, is analysed in $4.3. 
Three restrictions are placed on the inner solution in 94.4 so that it is acceptable from 
a physical point of view, and in $4.5 the inner and outer solutions are matched. 

4.2. Outer region 

The appropriate scales for the outer region are the same as those already introduced 
in $2.2. Expansion in e of the quantities identified in (4.4) are assumed of the forms 

(4.5c) 

(4.5d) 

(4.5e) 

valid in the limit as e+ 0. The necessity to include terms proportional to e In e in the 
expansions of hoc, A,, and G, becomes evident when matching (see $4.5). They do 
not appear in the expansions of and $Roc because the scale of the size of the 
inner region is e. The lowest-order mode (000) has already been solved in $2.3. 

We begin by solving the (OC1) mode. Substituting the above expansions into 

where the contact-angle boundary condition and the volume constraint have been 
expanded in a manner similar to that described in $3.1. Singularities can be 
anticipated at $ = k in  due to the discontinuities in the function on the right-hand 
side of (4.7). 

The solution is obtained by using the same procedure presented in 93.2. Equation 
(4.6) is made homogeneous by introducing a new dependent variable 

H,,, = h,,,+ A,,, T T  - s r c o s $ .  (4.9) 

It is easily shown that a solution for H,,, can be represented by 
00 

H,,, = B, I,(&) + B, I l l@)  cos Z$. 
1 - 1  

Substituting (4.10) and (4.9) into (4.7) and recognizing that 

O for --in < $ <&n, 

- 1  for in < $ < in 

O0 2(-1)n 
n,oR(2n+ 1 )  

-$+ x cos(2n+1)$ = 

gives the following : 

(4.10) 

2@I,(!q 
Gcl = XI2(@)  ' 

(4.11) 
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- @I,(@) +A,,, [I,(@) + 12(@)1 

TIo( @) [lo( Tq + I,( 5 9 1  - 2T[11( 
’ B, = (4.12) 

4( - l ) n  

B,, = 0 for n = 1,2,  ... . (4.14) 

The constant A,,, is determined by (4.8), which becomes 

AOCl - BOI1 (@)- - - 0, 
2fi  

-2[I,(Ti)]2 
(4.15) 

and (4.12) to  give 

A,,, = [I,(Tt) +I@)] I,@) -2[Il(Tt)]2’ 

The constant B, is yet to be determined. 
It is natural to proceed in a similar fashion as that outlined in $3.2 to calculate 

B,. It can easily be shown that Roc, = ho,,(l,q5; T), where an explicit representation 
of the location of the contact line is given by 

R,, - 1+elneROCL(q5;T)+eROC1(q5;T)+. ... 

Substituting (4.9), (4.10) and (4.14) into the above gives 

R,, - 1+elneROcL+e 

00 

+[~+B,I l (T~)]oosq5+ Z B2,+,I,,+,(T~)cos(2n+ l)q5]. (4.16) 
n-1 

However, (4.7) requires that the maximum width of the drop lies in the x = 0 plane; 
i.e. d(R,, sinq5)/dq5 = 0 a t  q5 = +_in, which implies 

(4.17) 

But it can be shown that R,,, - O(x  In 1x1) as x+O (refer to §4.5), hence IdR,,,/d~( 4 00 

as +&&x. No finite value of B, can be chosen so that (4.17) is satisfied. Thus the 
solution is singular in the neighbourhood of (1, in) and (1, -in). A different expansion 
in E must be used in order to obtain a solution valid in these regions. This is pursued 
in 94.3. 

In the remainder of this subsection a solution to  the (OCL) mode is determined. 
I t  is easily shown that the boundary-value problem is 

rzx r i  J (4.18) 
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The solution for hocL is obtained in an identical manner as for h,,,. It is straightforward 
to show that 

L, I ,  (@) C O S 4 .  
2AOCL 

and 

RoeL = TI,(@) [I,(@)+ 12(@)]-2T[11(@)]2 

Equation (4.18) gives AOcL = 0;  hence the solution of the (OcL) mode is 

hocL = L, I , ( r ,  @) cos #, 
RocL = L, I,(@) cos 4, 

where the constant L,  is yet t o  be determined. 

4.3. Inner region 

The two inner regions located in the neighbourhood of (1,;n) and (1, --in) are 
identical in nature since the problem is symmetric about the y = 0 plane. Therefore 
we need only analyse the solution near (1,in). It is convenient to introduce a new 
rectangular Cartesian coordinate system (z, g) defined by 

zr--z, Y = l - y .  

The scale of the inner region can be anticipated by (4.2) to be E ,  thus introducing 
the inner independent and dependent variables 

The justification of this choice is based on the successful matching of the solutions 
in the inner and outer regions ($4.5). The straight-line segments of the contact line 
on the side of the drop lie within the inner region, with endpoints located at ZC = L, 
(see figure 5 ) .  Thus, their length in dimensional form is given by 2~aL,, and the 
location of the x = 0 plane is specified. 

An asymptotic expansion of h,,, is assumed to  have the form 

he,, - h~OOO(~,> Y e  ; T )  + & O c l ( ~ e ?  Ye; T )  + . . . (4.19) 

valid in the limit as E + O .  Expansions for A,,, and G,  have already been 
specified by (4 .5b-e) .  In fact, all of the leading terms appearing in these expansions 
have been determined by the outer solution except for 

The governing equation and boundary condition for the inner region are obtained 
in the usual way. To lowest order, i.e. O(1) as e+O,  one finds 

and L,. 

In the above formulation the location of the contact line is given by & = KO,, where 
an expansion has been assumed of the form 

y,,, - ~ o o o ( T ) + c Y , , , , ( ~ , ;  T)+ -... 
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I, L e  0 -4 

FICTJRE 5.  The shape of the contact line as viewed from the inner region. The original of the 
coordinate system (ze, 8,) is located midway between the ends of the straight-line segments and 
a distance of 1 from the centre of the drop. 

valid in the limit as e + O .  Note that the contact line is being expanded about the 
straight line Ft = ~,,,, whose location is yet to be determined. This differs to O(e) 
as E + O  from the location a t  which the outer representation of the contact line has 
been expanded about in the neighbourhood of $ = 27~. The solution to the above 

(4.20) 
boundary-value problem is 

The boundary-value problem to O(e) as e+O is 

- 
JL€OOO = Yt- yeooo. 

- - 

h,,,, = - lioCl on g, = 1’,,,, for - L, < F~ < L,, 

o on ye = ~ , o ,  for ze < - L ~ ,  
- %=i - 1 on Y, = l~,,, for F, > L,, 

where the value of A,,, is given by (2.20). Note that if we introduce the variable zoo,. 
the width of the drop made dimensionless with a,  then its expansion in e is 

valid as e+O. However, UI,, = 2 - - 2 2 ~ ~ , ~ ( O ; T , e ) .  Hence we can make the identifi- 
cation that 

The remainder of this subsection is devoted to obtaining the solution to the above 
problem. 

As with previous problems, we begin by defining a new dependent variable, H,,,, 
PO that the only inhomogeneous term in the boundary-value problem appears in the 
boundary conditions 

In obtaining a solution for H,,,, i t  is convenient to write 

U’,, - 3 + €ZOOcl + €2U10,2 + . . . , 
- - 

200tl = -2  q o o o ,  U+),, = -2  I;,,. . 

(4.21) H€,,l = h t O C l  -E A,,,. 

f-40,, = H, + HR7 
where H ,  satisfies 

- 

0 on g, = Yo,, for .Fe < 0, 

- 1 on Y, = Ycooo for Fc > 0,  
- 

(4.22) 

(4.23) 
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T Y 

FIGURE 6. The shaded areas in (a )  and ( b )  indicate the domain over which a solution is sought. The 
locations of the points A ,  B, C, D and E indicate the transformation of the boundary. 

It can easily be shown that a particular solution is 

Thus H* must satisfy 
a2HR a2& -+-- - 0, 
ap: ag: 

- -- - 0 on g6 = Y,,,, for I F ~ ~  > L,; 
3Y& 

The - boundary-value problem defined above has a mixed boundary condition along 
Y, = YE,,, since it is of the first kind over the interval - L, < .E~ < L,, and of t8he 
second kind over lZ,l > L,. I n  order to reduce the problem to a more typical form, 
the coordinates are transformed from (z6, gE) to (S, Y )  by 

- - 

- " = cosh YsinX, "- = sinh ycos 
L, Lt 

This maps the semi-infinite plane 

{(z,,g&)lgt > ~,,,; -00 < Ze < 00) 

((9, Y)l Y 2 0;  -47c < x < in} 
over which a solution is sought into the semi-infinite strip 

(see figure 6). The boundary-value problem transforms to 

(4.25) 

(4.26) 

Le LE A,,, sin2 X + - sin S In (L; sin2 Y) - - sin X HR - woC2 L; 
2 2  n It 

on Y =  0 for -in < X < $ .  (4.27) 
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It is easily shown that a solution to (4.25) and (4.26) is 
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03 

H R  = C,  Y + Do + C [C2k+le(2k+1) I'+ D 2 k + l  e-@lc+l) I'] sin (2k  + 1) X 
k - 0  

m 

k - 1  
+ x [C,ke2kY+D 2k e-2kI']cos2kX. (4.28) 

To determine the unknown constants, we begin by noting that 

( ' ) s i n ( 2 ~ + 1 ) ~ .  
sinSln(sin2X) = (1-21n2)sinXt Z 

k-1 k + l  k 

sin2X = g-$cos2X. 
and that 

Substituting the above two relationships into (4.27) and (4.28) gives the following: 

Do = ~u~,,,-+L,2A0,,, Cl+D - - - 27c 

Substituting the above into (4.28) and adding (4.24) gives 

cosh Y sin 
sinh Y cos X 7 sinh Y cos X + C, Y + ~,,, 

L, --[In L,2 - 2 +In (cosh2 Y sin2 X +  sinh2 Ycos2X)] cosh Y sin 9 

-fL,2 A,,, + - (- 1 + ln&?)e-I'sin X+ C, sinh Y sin X 

+ $5: A,,, ecZy cos 2X+ 2C, sinh 2 Ycos 2 Y  

+ Z 2C,k+lsinh(2k+l) Z ' s in(2k+l )S  

27c 
LE 
27c 

m 

k - 1  

- -e-Y LE e+* sin 2X Le 
27c 7c i - eP2I' cos 2 X  

sin S + - cos Y sinh Y tan-l 

(4.29) 

where the constants woc2, L,, C,, C,, and{C,k+l : k = 0, 1 , 2 ,  . . .} are as yet undetermined. 
It should be noted that the following identity was used in deriving (4.29) : 

Le + -sin X cosh Y In (1 - 2e-,' COS 2X + e-4y)i, 
7c 

[ - k] e-(zk+l) I' sin (21~ + 1) x 
k = l  

e-,I' sin 2X 
1 - e-21' cos 2 s  

- e- I' sin X + 2 cos X sinh Y tan-' - - 

+ 2 sin S cosh Yln (1 -e--2y cos 2X+ e ~ ~ ~ ) ; .  (4.30) 

Before proceeding to match the inner and outer solutions, there remain three 
additional restrictions that must be satisfied by the inner solution. These are 
presented in 84.4. 
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4.4. Compatibility conditions on the solution within the inner region 

Three additional conditions must be satisfied by the inner solution in order for i t  to  
be acceptable from a physical point of view. Even though the contact angle is not 
specified along the straight-line segments, it has been established in $2.1 that its value 
must lie within the interval [6,, 6,]. The second condition arises from the fact that  
the solution in the neighbourhood of the endpoints of the straight-line segments must 
be consistent with the small-slope approximation. It is shown below that the 
consequence of this requirement is a continuous tangent along the contact line. The 
third condition reflects the fact that  the drop is widest between the straight-line 
segments. Since the second condition results in d E,,/d%, = 0 at ze = +_ L,, this last 
condition requires d2 F60,/dzE 2 0 as X,+ f L, for lE,l > L,. 

It is easily shown that the first condition mentioned above implies 

< o on y, = Y,,,, for -L, < Z~ < L,. (4.31) ah,,,, - 1  <--- 
a y e  

Taking into account the various changes in variable, one finds 

The right-hand side of the above equation can be evaluated using (4.30) to  give 

It is straightforward to show that (4.31) implies 

1 
L, < -. 

It 
(4.32) 

Since the shape of the contact line and the surface of the drop are related to O ( E )  
- - as E + O  by 

it follows directly that Jdco,,/dz6J < co is necessary for JVh,,,,J to be uniformly 
bounded, a requirement of the small-slope approximation. It is easily shown that 
along positions corresponding to IzJ > L, one gets 

KO,, = - ~ E o c ! l ( ~ c ?  Y E O O O ) '  

(4.33) 

Since we are primarily interested in the neighbourhood of %fe = f L,, a Taylor series 
is performed on dHcocl/dYl(k~,Y~ about Y = 0, yielding 

- +..., (4.34) 

where it has been assumed {Czk+l = 0:  k = 1,2, . . .}, a consequence of matching (see 
54.5). It is evident that Jd~o,l/d%,l < 00 implies 

LE 2 
71 =, Cof -1n- ~ 2 C 1 + + L ~ A 0 , , - 4 C 2  = 0. 
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These two equations can be rewritten as 
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Go + +L,2 A,,, - 4C2 = 0, 

C --ln-. L, L, 
, - 2 x  2 

(4.35) 

(4.36) 

It is easily shown that not only are (4.35) and (4.36) necessary for the validity of the 
small-slope approximation, they also imply that dKocl/dZe + O  as %,+ f L, for 

In order to impose the third condition, an expression for the curvature of the 
contact line valid near the endpoints of the straight-line segment is required. 
Differentiating (4.33) and making use of (4.34)-(4.36) gives 

Ix,l > L,. 

The requirement that d2 ~,,,,/d9 2 0 as %,+ L, for Ix,l > L, implies 

(4.37) 
L f22 -2c0. x 

In  $4.5 the value of C, is determined. Equations (4.32) and (4.37) can then be used 
to determine L,. 

4.5. Matching 

The constants L,, C,, {Czk+l: k: = 1,2,  . . .}, ~ o o o ,  L, and B, are determined by matching 
the inner and outer solutions. This is accomplished by expressing the solution valid 
in the inner region in terms of the outer variables (%,y) and expanding it in terms 
of the asymptotic sequence { 1 ,  E In E ,  e,  . . .}. The abovementioned constants are 
determined by equating this expression to the local form of the outer solution. 

The inner solution to O(e)  as e+O is obtained by combining (4.21), (4.29), (4.19) 
and (4.20), yielding 

Ee 1 h,o - !7, - y,ooo + Tf A,,, - m, - r,,,,l[: + ; tan-1 
€9 1 

Y, - KO00 

EC, 4 - 2C,Z,€ 4ec2 
2 L,2 L, L, + -ln-[%E+(&- Ycooo)2]+ ~ + T[-e+[Y,- Y,ooo121~ 

where we have anticipated the fact that {CZkfl = 0:k = 1,2,  ...}, and we have 
neglected terms that are small as %f+y,"+ co. Changing to the outer variables, and 
retaining only terms of order less than or equal to E as €:-to, gives 

r,,,,- 8c2 z o o 0 7  +... . (4.38) 
5? 2c, x 
2x L, L,2 

--{-2+ln(P+g)}+-- 

Unfortunately, it is a little awkward to obtain the local form of the outer solution 
in the vicinity of r = 1,  $ = +x using the form of the solution derived in $4.2. This 
is a direct consequence of the fact that the series appearing in (4.10) does not converge 
uniformly. However, it is a fairly straightforward procedure to derive an analytic 
solution for h,,, valid only in the neighbourhood of r = 1,  $ = in. 
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The local form of the outer solution valid to O(s)  as e + O ,  is 

21 

h, - ~+&4,,, 2 -S(A,,, + 1) (2 - y") --L, I,(@) Zs1n e +  E N~ Z- (A,,, + 1) y Y,,, 1 

-A,, ,[I ,(T~)]2 + TtI,(Tt) I,(Tt) F -  
Oo0 - TI,(@) [Io(@) + I , (@) ] -2T[I1 (@)]Z  ' (4.40) 

1 Gel 1 -BIIl(@)- - - - + -In [cos $ I 2  
IT T 2% 

Either Nl or B, can be regarded as unknown; a t  this point, it  is more convenient 
for N ,  to appear in (4.39). 

Requiring (4.38) and (4.39) to be the same gives rise to the following: 

Combining the above with (4.35) and (4.36) gives 

L, L€ C, = $L,", C, = --In--, C, = @,2(AOo0+1), 
27c 2 

-1 1 L, 
nI,(@) ' R 2  

L, = ~ N ,  = -1n-. 

The remaining constant L, is determined by (4.32) and (4.37). Substituting the above 
expression for C, into (4.37) gives- L,/IT 2 - L,2. This implies that L, 2 1/n. However, 
(4.32) demands that L, d I/IT. Hence the only possibility is that L, = 1/71. 

Since the value of Nl has been explicitly determined, (4.41) may be used to obtain 
B,(T).  This has been done numerically (refer to figure 7 and Appendix B). 

5. The steady motion of a drop moving down an inclined plane with 
contact-angle hysteresis 

It is fairly straightforward to show that the leading terms in an asymptotic 
expansion, valid in the limit as s+O, are given by the various modes identified in 
$5 3 and 4. The expansions of the dependent variable and unknown parameters are 
most easily appreciated by identifying them in two steps. Since we are interested in 
describing the steady motion of a drop moving down an inclined plane, the value of 
G must be greater than G,. Hence we can begin by expanding the various quantities 
in terms of the small parameter G - G, as follows : 
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0.1 

FIGURE 7 .  Curve (a) indicates the value of BIIl(!P$ evaluated numerically. Curve (b) is its 
asymptotic form valid for small values of T given by (B 2). 

valid in the limit as s+0,  then the lowest-order mode must correspond to the problem 
analysed in $3. This follows from the fact that the expansions appearing in (5.1 a-e) 
are valid when E = 0, which is by definition the problem analysed in $3. Hence both 

and $RO1O are equal to zero. 
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6. Results and discussion 
The results derived in the preceding sections can be used to solve some of the 

problems identified in $ 1 ,  subject, of course, to the limitations imposed by both the 
small-slope approximation and E < 1 .  

Let us begin by determining the volume of the largest drop that can stick to a solid, 
assuming that 8 ~ ,  8,, u/pg,  and y are all specified. However, before V can be 
calculated, the value of the scale a must be determined (refer to  (2.21)). This can be 
accomplished by using the relationship obtained upon substituting the value of G,,, 
given by (4.11), into G - eGcl :  

2 I,(@) 
7t @Iz ( @) ' 

tan y = e8,-- 

where y is equivalent to y, for this problem. Since y ,  eA and O R  are known, (6.1) can 
be used to  calculate T .  The value of a follows directly from the definition of T .  For 
convenience, the solution of (6.1) is provided in figure 8 for various values of ~ 8 ~ .  
The parameter Bd, defined as pga2/a, appearing in the figure, is a convenient 
dimensionless form for a. It is often referred to as the Bond number. Upon expanding 
the right-hand side of (6.1) asymptotically for both T+O and T +  00, two approximate 
forms of the solution are obtained: - 

8 
Bd €8,- ns iny '  

(6.3) 
1 -+-+[(-+-) EeA 15 eeA - 

Bd -{ cosy 16 l5 n t a n y  16 n t a n y  

valid in the limits T+O and T+ 00 respectively. Note that T+O corresponds to either 
y+90° or Bd+O; while T+ co corresponds to &+ CO. The calculation for v is 
completed by combining the above results with (2.21). This eliminates the presence 
of the scale a ,  and yields an explicit relationship between the dimensionless volume 
V/nB,((r/pg); and y (refer to figure 9). The leading terms of asymptotic expansions 
of this relationship are 

n8,(a/pg)3 (n2"n.;)t - 2  - (6.4) 
V 

valid in the limits T+O and T +  co respectively, where (6.3) must be substituted into 
(6.5) in order to obtain its final form. It is worth noting that Bd represents, to  lowest 
order, a dimensionless form of the area naz of the solid wetted by the drop, in addition 
to providing necessary information for determining the volume of the largest drop. 
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yc 

FIGURE 8. Equation (6.1) is evaluated for different values of SO,; €0, = 0.1' for (a ) ,  0.337' for ( b ) ,  
1.0' for ( c ) ,  1.88' for (d) ,  3.37' for ( e ) ,  5.84' for (f), 10' for g .  Curves denoted by -----and -.- 
are obtained by evaluating (6.3) and (6.2) respectively. This is only valid when the drop is in its 
critical static configuration. 

0.000 1 : 

* 

0. lo 1 .on 10" 90' 
YC 

FIQURE 9. The volume V/~O,(cr/pg)f  of the drop in its critical static configuration is evaluated 
a t  different angles of inclination yc for the same values of €0, as in figure 8. The curves denoted 
by ----- and are obtained by evaluating (6.5) and (6.4) respectively. 
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FIQURE 10. The width of the drop in its critical static configuration is 
obtained directly from (6.6) by using zoo. 

It is also of interest to determine the shape of the drop in its critical configuration. 
The existence of straight-line segments in the contact line along its sides has already 
been discussed in $$1 and 2. In order for the solution presented in $4 to be consistent 
with the small-slope approximation, it was found that the length of these segments 
must equal 2ealn:. In  spite of the existence of these segments, it  is surprising to find, 
upon evaluating (4.16) at Q, = 0, in, n: and inTc. that  the length and width of the drop 
are equal, at least to O(E) as E+O.  Their value is given by 2a-2asE0,. Substituting 
(4.15) into (4.40) yields 

(refer to figure 10). It can readily be shown that Eo0+ -;as T+O, and that goo+-+ 
as T-too. The asymmetry induced by the contact-angle hysteresis takes the form 
of unequal distances between the origin (refer to figure 5 )  and the front and rear of 
the drop. The degree to which this occurs can be quantified by Ro(0) -+[R,(O) + RO(n:)], 
which will be referred to as So. It value, to O(e)  as e+O, can be evaluated directly 

1 
by using (4.16), giving 

ae 2n: n: so, N ;[ln; + -2  (6.7) 

as T+O. Thus, for small values of e ,  S is positive, indicating that the drop ‘droops 
forward ’ in its critical configuration. 

When V and y take on values resulting in G > G,, the drop must be moving down 
the surface. Before calculating either G or GC1, it is necessary to evaluate the scale 
a. Since the values of both V and y are known, the value of a can be calculated directly 
from (2.21). For convenience, this equation is presented in figure 11, which illustrates 
the dependence of V/n:B,(a/pg cos y)2 on the variable T .  Knowledge of the value of 
T determines G by the expression (T tan y)/B,, and determines G,, by (4.1 1 )  or figure 
12. Having calculated both G and G,,, the speed a t  which the drop moves down the 
surface when it achieves steady state, UDo, in dimensional form, can easily be 
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FIQURE 1 1 .  The dependence of V/'lxO,(cr/pgcosy)~ on T calculated directly from (2.21). The 
relationship is valid whether or not the drop is in its critical configuration. 

T 
FIQURE 12. The variation of G,, with T 

evaluated from - U p o l o ~ A 0 A ( G - ~ G C 1 ) .  Upon substituting ( 3 . 1 1 )  into this expression, 
it is found, to lowest order, that 

2 v  
( G  - eG0,). n a 3 ( 1 / ~ ,  + i / K A )  "DO - 

Note that a large positive value of dB/dU for either U > 0 or U < 0 (equivalent for 
~ / K A  or 1 / ~ ~ ) ,  results in a slowly moving drop. Negative values of dBldU can cause 
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a drop to move up the surface of the solid, a violation, one might suspect, of the second 
law of thermodynamics!t For material systems in which the values of dO/dU are near 
zero for both IT 3 0, thus resulting in a large value of ,uUo/a, (6.8) is no longer valid 
because the viscous forces created by the motion of the liquid within the drop are 
no longer negligible. 

The manner in which the dynamics of the drop affects its shape is also somewhat 
interesting. To lowest order, its length L, and width w are no longer equal. It can 
easily be shown that, in the limit as T+O, 

- 5 7c KR-KA 
LD~2a-2as&, , - -  G-- G+-- -  ~ 

7c "( ","(- 6 ~ ) K ~ + K * '  

w-2a-2aeY,,,+- - "( G-- :)(" --- 5)KR-KA,  ___ 
7c 8 6 K R + K A  

where c, Catalan's constant, equals 0.915965594 177219015.. . (Abramowitz & 
Stegun 1964). Since both constants a+%-$ and in2-# are positive, the relative 
sizes of L, and w depend on the relative values of KA and K R ;  if 1 / K A  > 1/KR, 
i.e. dO/dU for U > 0 is larger than dO/dU for IT < 0, than the drop is wider than it 
is long, w > L,; while 1 / K R  > 1/KA creates a drop that is longer than it is wide, 
L, > w .  On the other hand, the value of So is unaffected by the motion of the drop, 
retaining the same value given by (6.7). 

Finally, as suggested in 8 1, it is not difficult to construct schemes for deducing the 
values of OA, OR, KA and KR based upon measuring various characteristics of the drop. 
For example, by placing a drop of known volume on a surface, and measuring its 
length and angle of inclination when it is in its critical configuration, (2.21), (6.1) and 
(6.6) can be used to determine 8, and OR. Once OA and OR are known, (6.8), (6.9), 
and either (2.21) or figure 11 can be used to calculate K* and KR from measurements 
of U ,  and L, for a drop of known volume placed on a surface inclined at a specified 
angle. 
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Appendix A. Force balance on a drop in its critical static configuration 
Let us sum the forces acting on the material body V indicated in figure 13 by the 
dashed line. We need only be concerned with the two components tangent to the plane 
of the surface of the solid. It follows directly that 

a ( M * m )  m dZ+ pg Vsin yc i, (A 1) 
O = J w  

where V denotes the location of the contact line, a differential length of which is given 
by dl, and M and m are unit vectors whose directions are indicated in figures 13 and 
4 respectively. 

We next make use of the definition of the contact angle, 
COSO = M-m.  

f The authors are unaware of any experimental measurements in which dO/dU takes on negative 
values for either the advancing or receding contact line. 
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M 
FIGURE 13. A side view of the drop in its critical static configuration. The boundary of V" is located 
within the gas, just beyond the interface, and within the drop, a bit above the solid. The unit vector 
M is embedded in the local tangent plane of the gas-liquid interface, perpendicular to the vector 
tangent to the contact line, and pointing away from the drop. 

The integration along the contact line can be divided into four segments: the 
advancing and receding %?, portions, along which the contact angle take on the 
constant values of 8, and 8, respectively; and the two straight lines on the sides of 
the drop (see figure 4). Owing to symmetry the j-component of integration must be 
zero; hence (A 1) can be rewritten as 

0 = CT cos OA Jw, m - i dl + CT cos OR m . i dl  +pg F7 sin y.  
Jw , 

The derivation of (1.1) is completed upon making the identification 

w = JwAm*idZ = - lwRrn-idl .  

Furmidge (1962) simplifies his derivation by assuming that the contact line is 
rectangular in shape. Thus he refers to  (1 .I) as an approximation that to his surprise 
agrees remarkably well with his experimental measurements ! 

Appendix B. Determination of B,(T) 
The value of B,(T) is obtained from the following limit: 

where G,, and (B,,,,: n = 1,Z ,...) are given by (4.11) and (4.13) respectively. With 
a little effort, it  can be shown that 

( -  l)"+l cos (2n+ 1) # 1 1 n 
cos $4 2n n 2 

-- In (cos $4), + - (In 2 - 1) -- as 4 +in. x 
n=l 2nn2 

Substituting this into the above expression gives 

The singularity has thus been removed from the summation. Since the convergence 
is now uniform, l'H8pital's rule can be used to give 
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In  the limit as T-tO i t  is easily shown that 

I n  general, the convergence of the series in (B 1) is fairly rapid and can readily be 
evaluated numerically over a relatively wide range of T (see figure 7) .  Note that it 
agrees well with the asymptotic expression given by (B 2) for T 2 0.3. 
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